858 research outputs found

    Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target

    Get PDF
    Secondary visual loss occurs in millions of patients due to a wound-healing response, known as posterior capsule opacification (PCO), following cataract surgery. An intraocular lens (IOL) is implanted into residual lens tissue, known as the capsular bag, following cataract removal. Standard IOLs allow the anterior and posterior capsules to become physically connected. This places pressure on the IOL and improves contact with the underlying posterior capsule. New open bag IOL designs separate the anterior capsule and posterior capsules and further reduce PCO incidence. It is hypothesised that this results from reduced cytokine availability due to greater irrigation of the bag. We therefore explored the role of growth factor restriction on PCO using human lens cell and tissue culture models. We demonstrate that cytokine dilution, by increasing medium volume, significantly reduced cell coverage in both closed and open capsular bag models. This coincided with reduced cell density and myofibroblast formation. A screen of 27 cytokines identified nine candidates whose expression profile correlated with growth. In particular, VEGF was found to regulate cell survival, growth and myofibroblast formation. VEGF provides a therapeutic target to further manage PCO development and will yield best results when used in conjunction with open bag IOL designs

    Typical asymmetry in the hemispheric activation during an fMRI verbal comprehension paradigm is related to better performance in verbal and non-verbal tasks in patients with epilepsy

    Get PDF
    Chronic exposure to seizures in patients with left hemisphere (LH) epileptic focus could favor higher activation in the contralateral hemisphere during language processing, but the cognitive effects of this remain unclear. This study assesses the relationship between asymmetry in hemispheric activation during language fMRI and performance in verbal and non-verbal tasks. Whereas prior studies primarily used fMRI paradigms that favor frontal lobe activation and less prominent activation of the medial or superior temporal lobes, we used a verbal comprehension paradigm previously demonstrated to activate reliably receptive language areas. Forty-seven patients with drug-resistant epilepsy candidates for surgery underwent a multidisciplinary assessment, including a comprehensive neuropsychological evaluation and an fMRI verbal comprehension paradigm. Patients were distributed in two groups depending on laterality indexes (LI): typical hemispheric asymmetry (unilateral left activation preponderance; n = 23) and atypical hemispheric asymmetry (bilateral or unilateral right preponderance; n = 24). Right-handedness and right hemisphere (RH) focus were significant predictors of typical asymmetry. Patients with typical activation pattern presented better performance intelligence quotient and verbal learning than patients with atypical hemispheric asymmetry (for all, p < 0.014). Patients with LH focus had more frequently atypical hemispheric asymmetry than patients with RH focus (p = 0.05). Specifically, they showed lower LI and this was related to worse performance in verbal and non-verbal tasks. In conclusion, an increased activation of homologous RH areas for verbal comprehension processing could imply a competition of cognitive resources in the performance of the same task, disrupting cognitive performance

    Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced glycation end products (AGEs) have been proposed to be involved in pulmonary fibrosis, but its role in this process has not been fully understood. To investigate the role of AGE formation in pulmonary fibrosis, we used a bleomycin (BLM)-stimulated rat model treated with aminoguanidine (AG), a crosslink inhibitor of AGE formation.</p> <p>Methods</p> <p>Rats were intratracheally instilled with BLM (5 mg/kg) and orally administered with AG (40, 80, 120 mg/kg) once daily for two weeks. AGEs level in lung tissue was determined by ELISA and pulmonary fibrosis was evaluated by Ashcroft score and hydroxyproline assay. The expression of heat shock protein 47 (HSP47), a collagen specific molecular chaperone, was measured with RT-PCR and Western blot. Moreover, TGFβ1 and its downstream Smad proteins were analyzed by Western blot.</p> <p>Results</p> <p>AGEs level in rat lungs, as well as lung hydroxyproline content and Ashcroft score, was significantly enhanced by BLM stimulation, which was abrogated by AG treatment. BLM significantly increased the expression of HSP47 mRNA and protein in lung tissues, and AG treatment markedly decreased BLM-induced HSP47 expression in a dose-dependent manner (p < 0.05). In addition, AG dose-dependently downregulated BLM-stimulated overexpressions of TGFβ1, phosphorylated (p)-Smad2 and p-Smad3 protein in lung tissues.</p> <p>Conclusion</p> <p>These findings suggest AGE formation may participate in the process of BLM-induced pulmonary fibrosis, and blockade of AGE formation by AG treatment attenuates BLM-induced pulmonary fibrosis in rats, which is implicated in inhibition of HSP47 expression and TGFβ/Smads signaling.</p

    Lumican Expression in Diaphragm Induced by Mechanical Ventilation

    Get PDF
    Diaphragmatic dysfunction found in the patients with acute lung injury required prolonged mechanical ventilation. Mechanical ventilation can induce production of inflammatory cytokines and excess deposition of extracellular matrix proteins via up-regulation of transforming growth factor (TGF)-β1. Lumican is known to participate in TGF-β1 signaling during wound healing. The mechanisms regulating interactions between mechanical ventilation and diaphragmatic injury are unclear. We hypothesized that diaphragmatic damage by short duration of mechanical stretch caused up-regulation of lumican that modulated TGF-β1 signaling.Male C57BL/6 mice, either wild-type or lumican-null, aged 3 months, weighing between 25 and 30 g, were exposed to normal tidal volume (10 ml/kg) or high tidal volume (30 ml/kg) mechanical ventilation with room air for 2 to 8 hours. Nonventilated mice served as control groups.High tidal volume mechanical ventilation induced interfibrillar disassembly of diaphragmatic collagen fiber, lumican activation, type I and III procollagen, fibronectin, and α-smooth muscle actin (α-SMA) mRNA, production of free radical and TGF-β1 protein, and positive staining of lumican in diaphragmatic fiber. Mechanical ventilation of lumican deficient mice attenuated diaphragmatic injury, type I and III procollagen, fibronectin, and α-SMA mRNA, and production of free radical and TGF-β1 protein. No significant diaphragmatic injury was found in mice subjected to normal tidal volume mechanical ventilation.Our data showed that high tidal volume mechanical ventilation induced TGF-β1 production, TGF-β1-inducible genes, e.g., collagen, and diaphragmatic dysfunction through activation of the lumican

    Genome-wide identification of splicing quantitative trait loci (sQTLs) in diverse ecotypes of Arabidopsis thaliana

    Get PDF
    Alternative splicing (AS) of pre-mRNAs contributes to transcriptome diversity and enables plants to generate different protein isoforms from a single gene and/or fine-tune gene expression during different development stages and environmental changes. Although AS is pervasive, the genetic basis for differential isoform usage in plants is still emerging. In this study, we performed genome-wide analysis in 666 geographically distributed diverse ecotypes of Arabidopsis thaliana to identify genomic regions [splicing quantitative trait loci (sQTLs)] that may regulate differential AS. These ecotypes belong to different microclimatic conditions and are part of the relict and non-relict populations. Although sQTLs were spread across the genome, we observed enrichment for trans-sQTL (trans-sQTLs hotspots) on chromosome one. Furthermore, we identified several sQTL (911) that co-localized with trait-linked single nucleotide polymorphisms (SNP) identified in the Arabidopsis genome-wide association studies (AraGWAS). Many sQTLs were enriched among circadian clock, flowering, and stress-responsive genes, suggesting a role for differential isoform usage in regulating these important processes in diverse ecotypes of Arabidopsis. In conclusion, the current study provides a deep insight into SNPs affecting isoform ratios/genes and facilitates a better mechanistic understanding of trait-associated SNPs in GWAS studies. To the best of our knowledge, this is the first report of sQTL analysis in a large set of Arabidopsis ecotypes and can be used as a reference to perform sQTL analysis in the Brassicaceae family. Since whole genome and transcriptome datasets are available for these diverse ecotypes, it could serve as a powerful resource for the biological interpretation of trait-associated loci, splice isoform ratios, and their phenotypic consequences to help produce more resilient and high yield crop varieties

    Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters

    Get PDF
    Synthesis of semiconductor nanoparticles with new photophysical properties is an area of special interest. Here, we report synthesis of ZnS nanoparticles in aqueous micellar solution of Cetyltrimethylammonium bromide (CTAB). The size of ZnS nanodispersions in aqueous micellar solution has been calculated using UV-vis spectroscopy, XRD, SAXS, and TEM measurements. The nanoparticles are found to be polydispersed in the size range 6–15 nm. Surface passivation by surfactant molecules has been studied using FTIR and fluorescence spectroscopy. The nanoparticles have been better stabilized using CTAB concentration above 1 mM. Furthermore, room temperature absorption and fluorescence emission of powdered ZnS nanoparticles after redispersion in water have also been investigated and compared with that in aqueous micellar solution. Time-dependent absorption behavior reveals that the formation of ZnS nanoparticles depends on CTAB concentration and was complete within 25 min
    • …
    corecore